论文标题
关于功能字段的广义Ramanujan猜想
On the generalized Ramanujan conjecture over function fields
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $G$ be a simple group over a global function field $K$, and let $π$ be a cuspidal automorphic representation of $G$. Suppose $K$ has two places $u$ and $v$ (satisfying a mild restriction on the residue field cardinality), at which the group $G$ is quasi-split, such that $π_u$ is tempered and $π_v$ is unramified and generic. We prove that $π$ is tempered at all unramified places $K_w$ at which $G$ is unramified quasi-split. The proof uses the Galois parametrization of cuspidal representations due to V. Lafforgue to relate the local Satake parameters of $π$ to Deligne's theory of Frobenius weights. The main observation is that, in view of the classification of generic unitary spherical representations, due to Barbasch and the first-named author, the theory of weights excludes generic complementary series as possible local components of $π$. This in turn determines the local Frobenius weights at all unramified places. In order to apply this observation in practice we need a result of the second-named author with Gan and Sawin on the weights of discrete series representations.