论文标题

GPU上QTENSOR量子电路模拟器的性能评估和加速度

Performance Evaluation and Acceleration of the QTensor Quantum Circuit Simulator on GPUs

论文作者

Lykov, Danylo, Chen, Angela, Chen, Huaxuan, Keipert, Kristopher, Zhang, Zheng, Gibbs, Tom, Alexeev, Yuri

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This work studies the porting and optimization of the tensor network simulator QTensor on GPUs, with the ultimate goal of simulating quantum circuits efficiently at scale on large GPU supercomputers. We implement NumPy, PyTorch, and CuPy backends and benchmark the codes to find the optimal allocation of tensor simulations to either a CPU or a GPU. We also present a dynamic mixed backend to achieve optimal performance. To demonstrate the performance, we simulate QAOA circuits for computing the MaxCut energy expectation. Our method achieves $176\times$ speedup on a GPU over the NumPy baseline on a CPU for the benchmarked QAOA circuits to solve MaxCut problem on a 3-regular graph of size 30 with depth $p=4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源