论文标题

无序相关电子系统的局部电子特性的机器学习预测

Machine learning predictions for local electronic properties of disordered correlated electron systems

论文作者

Liu, Yi-Hsuan, Zhang, Sheng, Zhang, Puhan, Lee, Ting-Kuo, Chern, Gia-Wei

论文摘要

我们提出了可扩展的机器学习(ML)模型,以预测局部电子特性,例如现场电子数和无序相关电子系统的双重职业。我们的方法基于多电子系统的位置原理或近视性质,这意味着局部电子特性主要取决于直接环境。开发了ML模型来编码局部数量对邻域的复杂依赖性。我们使用方形安德森 - 哈伯德模型展示了我们的方法,该模型是一个范式的系统,用于研究莫特过渡与安德森本地化之间的相互作用。我们基于组理论方法开发一个晶格描述符,以表示有限区域内的现场随机势。所得的特征变量被用作多层完全连接的神经网络的输入,该网络是从小型系统上的变异蒙特卡洛(VMC)模拟数据集中训练的。我们表明,ML预测与VMC数据相当一致。我们的工作强调了ML方法对相关电子系统多尺度建模的有希望的潜力。

We present a scalable machine learning (ML) model to predict local electronic properties such as on-site electron number and double occupation for disordered correlated electron systems. Our approach is based on the locality principle, or the nearsightedness nature, of many-electron systems, which means local electronic properties depend mainly on the immediate environment. A ML model is developed to encode this complex dependence of local quantities on the neighborhood. We demonstrate our approach using the square-lattice Anderson-Hubbard model, which is a paradigmatic system for studying the interplay between Mott transition and Anderson localization. We develop a lattice descriptor based on group-theoretical method to represent the on-site random potentials within a finite region. The resultant feature variables are used as input to a multi-layer fully connected neural network, which is trained from datasets of variational Monte Carlo (VMC) simulations on small systems. We show that the ML predictions agree reasonably well with the VMC data. Our work underscores the promising potential of ML methods for multi-scale modeling of correlated electron systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源