论文标题
通过单位矩阵的量子特征值转换对早期耐断层量子计算机的基态制备和能量估计
Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices
论文作者
论文摘要
在适当的假设下,[林,tong,Quantum 2020]中的算法可以估计基态能量,并准备具有近乎最佳查询复杂性的量子量子的基态。但是,这是基于哈密顿量的块编码输入模型的块,该模型已知其实现需要大量的资源开销。我们开发了一种具有实际多项式(QET-U)的统一矩阵的量子特征值转换的工具,该矩阵使用受控的哈密顿进化作为输入模型,单个Ancilla Qubit和无多Qubit Control操作,因此适用于早期耐断层量子量子设备。这导致了一种简单的量子算法,该算法的表现优于所有先前的算法,具有可比的电路结构来估计基态能。对于一类量子自旋哈密顿量,我们提出了一种新方法,该方法利用某些反通讯关系,并进一步消除了实施受控的哈密顿进化的需求。结合基于猪蹄的近似,哈密顿进化,所得算法非常适合早期耐断层的量子装置。我们使用IBM Qiskit为横向场ISING模型演示了算法的性能。如果我们被允许进一步使用多Quition Toffoli门,则可以实现振幅扩增和新的二元振幅估计算法,从而增加电路深度,但会降低总查询复杂性。所得算法使用恒定数量的Ancilla Qubits(不超过3),以实现基态制备和能量估算的近乎最佳的复杂性。
Under suitable assumptions, the algorithms in [Lin, Tong, Quantum 2020] can estimate the ground state energy and prepare the ground state of a quantum Hamiltonian with near-optimal query complexities. However, this is based on a block encoding input model of the Hamiltonian, whose implementation is known to require a large resource overhead. We develop a tool called quantum eigenvalue transformation of unitary matrices with real polynomials (QET-U), which uses a controlled Hamiltonian evolution as the input model, a single ancilla qubit and no multi-qubit control operations, and is thus suitable for early fault-tolerant quantum devices. This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy. For a class of quantum spin Hamiltonians, we propose a new method that exploits certain anti-commutation relations and further removes the need of implementing the controlled Hamiltonian evolution. Coupled with Trotter based approximation of the Hamiltonian evolution, the resulting algorithm can be very suitable for early fault-tolerant quantum devices. We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model. If we are further allowed to use multi-qubit Toffoli gates, we can then implement amplitude amplification and a new binary amplitude estimation algorithm, which increases the circuit depth but decreases the total query complexity. The resulting algorithm saturates the near-optimal complexity for ground state preparation and energy estimating using a constant number of ancilla qubits (no more than 3).