论文标题

DNN学习Lagrangian漂移的DNN框架不确定性

A DNN Framework for Learning Lagrangian Drift With Uncertainty

论文作者

Jenkins, Joseph, Paiement, Adeline, Ourmières, Yann, Sommer, Julien Le, Verron, Jacques, Ubelmann, Clément, Glotin, Hervé

论文摘要

Lagrangian漂移的重建,例如,由于数据中未解决的物理现象,在海上丢失的物体通常不确定。通常通过将随机性引入漂移来克服不确定性,但是这种方法需要对不确定性进行建模的特定假设。我们通过提供纯粹的数据驱动框架来删除此约束,以在灵活的环境中对概率漂移进行建模。使用海洋循环模型模拟,我们通过模拟初始对象位置中的不确定性来生成对象位置的概率轨迹。我们在一天中训练概率漂移的模拟器,因为鉴于广为已知的速度,并且与数值模拟良好一致。测试了几个损失功能。然后,我们通过训练模型不完美的培训模型来解决我们的框架。在这些更困难的情况下,我们观察到合理的预测,尽管在评估模型与看不见的流动方案时,数据漂移的效果变得明显。

Reconstructions of Lagrangian drift, for example for objects lost at sea, are often uncertain due to unresolved physical phenomena within the data. Uncertainty is usually overcome by introducing stochasticity into the drift, but this approach requires specific assumptions for modelling uncertainty. We remove this constraint by presenting a purely data-driven framework for modelling probabilistic drift in flexible environments. Using ocean circulation model simulations, we generate probabilistic trajectories of object location by simulating uncertainty in the initial object position. We train an emulator of probabilistic drift over one day given perfectly known velocities and observe good agreement with numerical simulations. Several loss functions are tested. Then, we strain our framework by training models where the input information is imperfect. On these harder scenarios, we observe reasonable predictions although the effects of data drift become noticeable when evaluating the models against unseen flow scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源