论文标题
超低维图表示的分层范围距离模型
A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph Representations
论文作者
论文摘要
图表学习(GRL)已成为表征复杂网络结构并执行诸如链接预测,节点分类,网络重建和社区检测等任务的核心。尽管已经提出了许多生成的GRL模型,但许多方法具有妨碍大规模网络分析的过度计算要求,但很少能明确地说明在多个尺度上出现的结构,并且只有少数明确尊重重要的网络属性,例如同质性和传递性。本文提出了一种新型可扩展图表示学习方法,名为层次块距离模型(HBDM)。 HBDM施加了类似于随机块建模(SBM)的多尺度结构,并通过在整个推断的层次结构中准确地近似潜在距离模型(LDM)来说明同质和传递性。 HBDM自然可容纳单面,定向和两部分网络,而层次结构旨在确保线性的时间和空间复杂性,从而可以分析非常大规模的网络。我们评估了HBDM在由数百万节点组成的大型网络上的性能。重要的是,我们发现所提出的HBDM框架在所有被考虑的下游任务中的最新可扩展方法都显着优于最新的可扩展方法。令人惊讶的是,我们观察到卓越的性能,甚至施加了超低的二维嵌入,促进了准确的直接和层次感知网络的可视化和解释。
Graph Representation Learning (GRL) has become central for characterizing structures of complex networks and performing tasks such as link prediction, node classification, network reconstruction, and community detection. Whereas numerous generative GRL models have been proposed, many approaches have prohibitive computational requirements hampering large-scale network analysis, fewer are able to explicitly account for structure emerging at multiple scales, and only a few explicitly respect important network properties such as homophily and transitivity. This paper proposes a novel scalable graph representation learning method named the Hierarchical Block Distance Model (HBDM). The HBDM imposes a multiscale block structure akin to stochastic block modeling (SBM) and accounts for homophily and transitivity by accurately approximating the latent distance model (LDM) throughout the inferred hierarchy. The HBDM naturally accommodates unipartite, directed, and bipartite networks whereas the hierarchy is designed to ensure linearithmic time and space complexity enabling the analysis of very large-scale networks. We evaluate the performance of the HBDM on massive networks consisting of millions of nodes. Importantly, we find that the proposed HBDM framework significantly outperforms recent scalable approaches in all considered downstream tasks. Surprisingly, we observe superior performance even imposing ultra-low two-dimensional embeddings facilitating accurate direct and hierarchical-aware network visualization and interpretation.