论文标题

过去有多少重要?使用动态生存模型使用电子健康记录监测心力衰竭患者的钾

How much of the past matters? Using dynamic survival models for the monitoring of potassium in heart failure patients using electronic health records

论文作者

Gregorio, Caterina, Barbati, Giulia, Scagnetto, Arjuna, Di Lenarda, Andrea, Ieva, Francesca

论文摘要

研究纵向生物标志物与死亡风险之间关联的统计方法与受慢性疾病影响的受试者的长期护理非常相关,例如心力衰竭患者的钾。特别是在合并症或药理治疗的情况下,突然危机会导致钾会发生非常突然但短暂的变化。在监测钾的背景下,需要一种动态模型,可以在临床实践中使用,以评估与观察到的患者钾轨迹相关的死亡风险。我们考虑了不同的动态生存方法,从考虑最新测量的简单方法开始到联合模型。然后,我们提出了一种基于小波过滤和地标的新颖方法,以检索过去短期钾转移的预后作用。我们认为,尽管考虑到过去的信息很重要,但并非所有过去的信息都同样有用。最新的动态生存模型容易对钾的平均长期价值更为重要。但是,我们的发现表明,必须考虑到最近的钾不稳定,以捕获所有相关的预后信息。所使用的数据来自2000多名受试者,总共通过行政健康记录以及门诊和住院诊所电子诊所收集了超过80,000多个重复的钾测量。在这项工作中提出了一种新型的动态生存方法,以监测心力衰竭的钾。提出的小波地标方法显示出令人鼓舞的结果,揭示了过去短期变化的预后作用,根据它们的持续时间的不同,并在预测个人的生存概率方面取得了更高的性能。

Statistical methods to study the association between a longitudinal biomarker and the risk of death are very relevant for the long-term care of subjects affected by chronic illnesses, such as potassium in heart failure patients. Particularly in the presence of comorbidities or pharmacological treatments, sudden crises can cause potassium to undergo very abrupt yet transient changes. In the context of the monitoring of potassium, there is a need for a dynamic model that can be used in clinical practice to assess the risk of death related to an observed patient's potassium trajectory. We considered different dynamic survival approaches, starting from the simple approach considering the most recent measurement, to the joint model. We then propose a novel method based on wavelet filtering and landmarking to retrieve the prognostic role of past short-term potassium shifts. We argue that while taking into account past information is important, not all past information is equally informative. State-of-the-art dynamic survival models are prone to give more importance to the mean long-term value of potassium. However, our findings suggest that it is essential to take into account also recent potassium instability to capture all the relevant prognostic information. The data used comes from over 2000 subjects, with a total of over 80 000 repeated potassium measurements collected through Administrative Health Records and Outpatient and Inpatient Clinic E-charts. A novel dynamic survival approach is proposed in this work for the monitoring of potassium in heart failure. The proposed wavelet landmark method shows promising results revealing the prognostic role of past short-term changes, according to their different duration, and achieving higher performances in predicting the survival probability of individuals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源