论文标题

引导运动预测与自洽约束

Bootstrap Motion Forecasting With Self-Consistent Constraints

论文作者

Ye, Maosheng, Xu, Jiamiao, Xu, Xunnong, Wang, Tengfei, Cao, Tongyi, Chen, Qifeng

论文摘要

我们提出了一个新颖的框架,以进行自动限制(MISC)进行引导运动预测。运动预测任务旨在通过纳入过去的空间和时间信息来预测车辆的未来轨迹。 MISC的一个关键设计是提出的双重一致性约束,该约束将训练过程中的空间和时间扰动下的预测轨迹正规化。此外,为了建模运动预测中的多模式,我们设计了一种新型的自我缩放方案,以获得准确的教师目标,以通过多模式监督执行自我构造。有了来自多个教师目标的明确限制,我们观察到预测绩效的明显改善。关于Argoverse运动预测基准和Waymo开放运动数据集的广泛实验表明,MISC明显胜过最新方法。由于拟议的策略是一般的,并且可以轻松地纳入其他运动预测方法中,因此我们还证明我们所提出的计划始终提高了几种现有方法的预测性能。

We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints (MISC). The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past. A key design of MISC is the proposed Dual Consistency Constraints that regularize the predicted trajectories under spatial and temporal perturbation during training. Also, to model the multi-modality in motion forecasting, we design a novel self-ensembling scheme to obtain accurate teacher targets to enforce the self-constraints with multi-modality supervision. With explicit constraints from multiple teacher targets, we observe a clear improvement in the prediction performance. Extensive experiments on the Argoverse motion forecasting benchmark and Waymo Open Motion dataset show that MISC significantly outperforms the state-of-the-art methods. As the proposed strategies are general and can be easily incorporated into other motion forecasting approaches, we also demonstrate that our proposed scheme consistently improves the prediction performance of several existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源