论文标题

基准为材料优化和发现的主动学习策略

Benchmarking Active Learning Strategies for Materials Optimization and Discovery

论文作者

Wang, Alex, Liang, Haotong, McDannald, Austin, Takeuchi, Ichiro, Kusne, A. Gilad

论文摘要

自主物理科学正在彻底改变材料科学。在这些系统中,机器学习控制了封闭循环中的实验设计,执行和分析。主动学习是最佳实验设计的机器学习领域,选择了每个随后的实验,以最大程度地提高知识对用户目标。可以通过实施科学机器学习(也称为归纳性偏见工程人工智能),可以进一步提高自主系统性能,从而将物理定律(例如Gibbs阶段规则)折叠到算法中。随着积极学习策略的数量,多样性和用途的增长,现实世界中参考数据集的必要性与基准策略相关。我们提出了一个参考数据集,并以各种获取功能的形式证明了其用于基准积极学习策略的用途。主动学习策略用于快速识别三元材料系统中具有最佳物理特性的材料。数据来自实际的Fe-Co-Ni薄膜文库,包括先前获得的材料组合物,X射线衍射模式以及磁性和Kerr旋转的两个功能性能的实验数据。流行的主动学习方法以及最近的科学活跃学习方法的材料优化性能是基准的。我们讨论算法性能,材料搜索空间复杂性与先验知识的合并之间的关系。

Autonomous physical science is revolutionizing materials science. In these systems, machine learning controls experiment design, execution, and analysis in a closed loop. Active learning, the machine learning field of optimal experiment design, selects each subsequent experiment to maximize knowledge toward the user goal. Autonomous system performance can be further improved with implementation of scientific machine learning, also known as inductive bias-engineered artificial intelligence, which folds prior knowledge of physical laws (e.g., Gibbs phase rule) into the algorithm. As the number, diversity, and uses for active learning strategies grow, there is an associated growing necessity for real-world reference datasets to benchmark strategies. We present a reference dataset and demonstrate its use to benchmark active learning strategies in the form of various acquisition functions. Active learning strategies are used to rapidly identify materials with optimal physical properties within a ternary materials system. The data is from an actual Fe-Co-Ni thin-film library and includes previously acquired experimental data for materials compositions, X-ray diffraction patterns, and two functional properties of magnetic coercivity and the Kerr rotation. Popular active learning methods along with a recent scientific active learning method are benchmarked for their materials optimization performance. We discuss the relationship between algorithm performance, materials search space complexity, and the incorporation of prior knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源