论文标题
巨大的状态密度范·霍夫(Van Hove)的奇异性
Giant density-of-states van Hove singularities in the face-centered cubic lattice
论文作者
论文摘要
在最接近和下一个最新的邻居近似中,以面部为中心的立方晶格的密度(DOS)中的所有范霍夫奇异性都被发现和分类。以特殊的值$τ$的特殊值形成了最接近的邻居跳跃积分,$ t $和$ t'$,由范霍夫线或表面引起的巨型dos奇点。提出了提供有效的数值实现的DOS的确切公式。由于范霍夫奇点引起的扭结附近的收敛性,标准四面体法被证明是不适用的。与包括下一邻居(无限邻居的无限协调号)的大空间维度(无限协调号)的情况进行了比较。
All van Hove singularities in the density of states (DOS) of face-centered cubic lattice in the nearest and next-nearest neighbour approximation, focusing on higher-order ones, are found and classified. At special values of the ratio $τ$ of nearest and next-nearest neighbour hopping integrals, $t$ and $t'$, giant DOS singularities, caused by van Hove lines or surfaces, are formed. An exact formula for DOS which provides efficient numerical implementation is proposed. The standard tetrahedron method is demonstrated to be inapplicable due to its poor convergence in the vicinity of kinks caused by van Hove singularities. A comparison with the case of large space dimensionality (infinite coordination number) including next-nearest neighbours is performed.