论文标题

用于零拍草图图像检索的三潮关节网络

Three-Stream Joint Network for Zero-Shot Sketch-Based Image Retrieval

论文作者

Zhan, Yu-Wei, Luo, Xin, Wang, Yongxin, Chen, Zhen-Duo, Xu, Xin-Shun

论文摘要

基于零的草图图像检索(ZS-SBIR)是一项艰巨的任务,因为草图和自然图像之间存在较大的域间隙以及可见类别和看不见的类别之间的语义不一致。以前的文献桥梁通过语义嵌入看到和看不见的类别,这需要对确切的班级名称和额外的提取工作进行事先了解。大多数作品通过使用构造的草图图像对映射草图和自然图像来减少域间隙,从而忽略图像和草图之间的未配对信息。为了解决这些问题,在本文中,我们为ZS-SBIR任务提出了一个新颖的三流联合培训网络(3Join)。为了缩小草图和图像之间的域差异,我们为自然图像提取边缘图,并将其视为图像和草图之间的桥梁,这些图像和草图之间的内容与图像的内容相似,并且样式与草图相似。为了利用草图,自然图像和边缘图的足够组合,提出了一个新型的三流联合训练网络。此外,我们使用教师网络无需其他语义来提取样本的隐式语义,并将博学的知识转移到看不见的类中。在两个现实世界数据集上进行的广泛实验证明了我们提出的方法的优越性。

The Zero-Shot Sketch-based Image Retrieval (ZS-SBIR) is a challenging task because of the large domain gap between sketches and natural images as well as the semantic inconsistency between seen and unseen categories. Previous literature bridges seen and unseen categories by semantic embedding, which requires prior knowledge of the exact class names and additional extraction efforts. And most works reduce domain gap by mapping sketches and natural images into a common high-level space using constructed sketch-image pairs, which ignore the unpaired information between images and sketches. To address these issues, in this paper, we propose a novel Three-Stream Joint Training Network (3JOIN) for the ZS-SBIR task. To narrow the domain differences between sketches and images, we extract edge maps for natural images and treat them as a bridge between images and sketches, which have similar content to images and similar style to sketches. For exploiting a sufficient combination of sketches, natural images, and edge maps, a novel three-stream joint training network is proposed. In addition, we use a teacher network to extract the implicit semantics of the samples without the aid of other semantics and transfer the learned knowledge to unseen classes. Extensive experiments conducted on two real-world datasets demonstrate the superiority of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源