论文标题
部分可观测时空混沌系统的无模型预测
The Role of Phase Stabilization and Surface Orientation in 4,4'-Biphenyl-Dicarboxylic Acid Self-Assembly and Transformation on Silver Substrates
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Molecular functionalization of nanoparticles and metallic substrates can be used to tune their properties for specific applications. However, polycrystalline substrates and nanoparticles exhibit surface planes with distinct crystallographic orientations. Therefore, the development of reliable strategies for molecular functionalization requires knowledge of the role of the surface plane orientation in the growth kinetics, structure, and properties of the molecular layer. Here, we apply a multiscale analysis to investigate the self-assembly of 4,4'-biphenyl-dicarboxylic acid (BDA) on Ag(111) and critically discuss the difference to Ag(100). Whereas the structural motifs for intact and fully deprotonated BDA are similar on both surfaces, the intermediate phases comprising partially deprotonated BDA differ in the structure and chemical composition. A real-time view of the phase transformations enables us to present a generalized picture of the phase transformations between the self-assembled molecular phases on the surfaces and underline important features such as the phase stabilization of the chemical composition and the mechanism of the related burst transformation. The influence of the substrate orientation on the structure of molecular layers and phase transformations provides the necessary background for developing functionalization strategies of the substrates displaying multiple surface planes and kinetic models for the growth near thermodynamic equilibrium.