论文标题
部分可观测时空混沌系统的无模型预测
Tubular neighborhoods of local models
论文作者
论文摘要
我们表明,$ p $ -adic shtukas的模量空间的V-sheaf本地模型是不可依式的。特别是,这证明了我们与Anschütz和Richarz联合工作中定义的方案理论本地模型始终正常,特殊纤维减少,从而确定了Scholze $ - $ weinstein Cosivenure $ p \ p \ leq 3 $的剩余案例。我们的方法是一般,拓扑,简化了朱的相干猜想的证明。作为技术输入,我们将附近Huber周期的比较定理概括为V-sheaf设置。
We show that the v-sheaf local models of moduli spaces of $p$-adic shtukas are unibranch. In particular, this proves that the scheme-theoretic local models defined in our joint work with Anschütz and Richarz are always normal with reduced special fiber, thereby establishing the remaining cases of the geometric part of the Scholze$-$Weinstein conjecture when $p \leq 3$. Our methods are general, topological, and simplify Zhu's proof of the coherence conjecture. As a technical input, we generalize a comparison theorem of nearby cycles of Huber to the v-sheaf setup.