论文标题

通过优先存储器重置不同尺寸的材料的学习设计和构建

Learning Design and Construction with Varying-Sized Materials via Prioritized Memory Resets

论文作者

Li, Yunfei, Kong, Tao, Li, Lei, Wu, Yi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Can a robot autonomously learn to design and construct a bridge from varying-sized blocks without a blueprint? It is a challenging task with long horizon and sparse reward -- the robot has to figure out physically stable design schemes and feasible actions to manipulate and transport blocks. Due to diverse block sizes, the state space and action trajectories are vast to explore. In this paper, we propose a hierarchical approach for this problem. It consists of a reinforcement-learning designer to propose high-level building instructions and a motion-planning-based action generator to manipulate blocks at the low level. For high-level learning, we develop a novel technique, prioritized memory resetting (PMR) to improve exploration. PMR adaptively resets the state to those most critical configurations from a replay buffer so that the robot can resume training on partial architectures instead of from scratch. Furthermore, we augment PMR with auxiliary training objectives and fine-tune the designer with the locomotion generator. Our experiments in simulation and on a real deployed robotic system demonstrate that it is able to effectively construct bridges with blocks of varying sizes at a high success rate. Demos can be found at https://sites.google.com/view/bridge-pmr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源