论文标题

Lipschitz在准文献上起作用

Lipschitz Functions on Quasiconformal Trees

论文作者

Freeman, David M., Gartland, Chris

论文摘要

我们首先识别(直至线性同构)Quasiarcs的Lipschitz无空间。通过将准形式的树分解为Quasiarcs,就像大卫,埃里克森 - 饮食和Vellis的文章中所做的那样,我们识别出lipchitz的lipchitz Quasiconformenform former-form-formenform former-formenformenform formenform formenformenformenformenformenformenformenformenformenformenformenformenformed Trees并证明Lipschitz Dimension 1。在Asatientions forepoctions depormentions中,我们将其定义为execomposition,定义了一个基于树状的型号,它是一个良好的型号。实际上,我们与准文献有关的结果是关于公制空间接受类似几何树状分解的特殊情况。此外,我们对Lipschitz的无空间研究中采用的方法产生了任何(弱)Quasiarc分解为可重新分解且纯粹不可分布的子集,这可能具有独立的关注。

We first identify (up to linear isomorphism) the Lipschitz free spaces of quasiarcs. By decomposing quasiconformal trees into quasiarcs as done in an article of David, Eriksson-Bique, and Vellis, we then identify the Lipschitz free spaces of quasiconformal trees and prove that quasiconformal trees have Lipschitz dimension 1. Generalizing the aforementioned decomposition, we define a geometric tree-like decomposition of a metric space. Our results pertaining to quasiconformal trees are in fact special cases of results about metric spaces admitting a geometric tree-like decomposition. Furthermore, the methods employed in our study of Lipschitz free spaces yield a decomposition of any (weak) quasiarc into rectifiable and purely unrectifiable subsets, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源