论文标题
高通量材料生长的贝叶斯优化和实验失败
Bayesian optimization with experimental failure for high-throughput materials growth
论文作者
论文摘要
通过机器学习和自动化技术(例如贝叶斯优化(BO)和机器人实验)实现创新的高通量材料增长的关键问题是由于实验性故障而无法处理缺失数据的合适方法。在这里,我们提出了一种新的BO算法,该算法在优化材料生长参数的优化中补充了丢失的数据。提出的方法提供了一种灵活的优化算法,能够搜索宽的多维参数空间。我们证明了该方法通过模拟数据以及其实际材料生长实施的有效性,即SRRUO3的机器学习辅助分子束外延(ML-MBE),在氧化物电子中广泛用作金属电极。通过在宽的三维参数空间中的剥削和探索,在补充缺失的数据的同时,我们获得了应对拉伸的SRRUO3薄膜,其较高的残留电阻率比为80.1,是有史以来张力良好的SRRRUO3膜中最高的,只有35 MBE的生长运行。
A crucial problem in achieving innovative high-throughput materials growth with machine learning and automation techniques, such as Bayesian optimization (BO) and robotic experimentation, has been a lack of an appropriate way to handle missing data due to experimental failures. Here, we propose a new BO algorithm that complements the missing data in the optimization of materials growth parameters. The proposed method provides a flexible optimization algorithm capable of searching a wide multi-dimensional parameter space. We demonstrate the effectiveness of the method with simulated data as well as in its implementation for actual materials growth, namely machine-learning-assisted molecular beam epitaxy (ML-MBE) of SrRuO3, which is widely used as a metallic electrode in oxide electronics. Through the exploitation and exploration in a wide three-dimensional parameter space, while complementing the missing data, we attained tensile-strained SrRuO3 film with a high residual resistivity ratio of 80.1, the highest among tensile-strained SrRuO3 films ever reported, in only 35 MBE growth runs.