论文标题
来自电子散射的强子和光核半径
Hadron and light nucleus radii from electron scattering
论文作者
论文摘要
从概念上讲,半径是最简单的庞加尔不变特性,可以与黑龙和光核有关。这些数量的准确值是必要的,以便可以判断标准模型中强相互作用问题的假定解决方案的特征。然而,限制了他们担任这一角色的能力,对旧数据的最新测量和新分析表明,质子,铅,kaon和deuteron的半径中的不确定性和不确定性。在使用电子 +强子弹性散射的半径测量的背景下,过去十年表明,可靠的提取需要完全消除与从业者依赖于数据拟合功能的偏见。对该挑战的不同答案已经提出;并且该视角描述了统一的Schlessinger Point方法(SPM),该方法将应用到Proton,Pion,Kaon和Deuteron Radii。基于分析函数理论,独立于对基本动力学的假设,没有从业者引起的偏见,并以相同形式适用于不同的系统和可观察到的,SPM返回了所考虑的任何数据中包含的信息的客观表达。它的强大性质和多功能性使其适合在实验和理论的许多分支中使用。
Conceptually, radii are amongst the simplest Poincaré-invariant properties that can be associated with hadrons and light nuclei. Accurate values of these quantities are necessary so that one may judge the character of putative solutions to the strong interaction problem within the Standard Model. However, limiting their ability to serve in this role, recent measurements and new analyses of older data have revealed uncertainties and imprecisions in the radii of the proton, pion, kaon, and deuteron. In the context of radius measurement using electron + hadron elastic scattering, the past decade has shown that reliable extraction requires complete elimination of bias associated with practitioner-dependent choices of data fitting functions. Different answers to that challenge have been offered; and this perspective describes the statistical Schlessinger point method (SPM), in unifying applications to proton, pion, kaon, and deuteron radii. Grounded in analytic function theory, independent of assumptions about underlying dynamics, free from practitioner-induced bias, and applicable in the same form to diverse systems and observables, the SPM returns an objective expression of the information contained in any data under consideration. Its robust nature and versatility make it suitable for use in many branches of experiment and theory.