论文标题
对广义Ohta-Kawasaki模型的非局部效应
Nonlocal Effect on a Generalized Ohta-Kawasaki Model
论文作者
论文摘要
我们提出了一个非局部ohta-kawasaki模型,以研究与某些具有一般远程相互作用的二元系统模式形成的非局部影响。虽然非局部Ohta-Kawasaki模型显示出与标准Ohta-Kawasaki模型相似的气泡模式,但通过进行傅立叶分析,我们发现非局部模型的最佳气泡数量可能具有上限,无论排斥强度有多大。这种上限的存在的特征是非局部核的特征值。此外,我们探讨了非局部视野参数可以促进或降低气泡分裂的条件,并将分析框架应用于各种非局部运算符的几个案例研究。
We propose a nonlocal Ohta-Kawasaki model to study the nonlocal effect on the pattern formation of some binary systems with general long-range interactions. While the nonlocal Ohta-Kawasaki model displays similar bubble patterns as the standard Ohta-Kawasaki model, by performing Fourier analysis, we find that the optimal number of bubbles for the nonlocal model may have an upper bound no matter how large the repulsive strength is. The existence of such an upper bound is characterized by the eigenvalues of the nonlocal kernels. Additionally we explore the conditions under which the nonlocal horizon parameter may promote or demote the bubble splitting, and apply the analysis framework to several case studies for various nonlocal operators.