论文标题
用于几个基于方面的情感分析的生成语言模型
A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis
论文作者
论文摘要
情感分析是自然语言处理中的重要任务。在最近的作品中,经过预训练的语言模型通常用于实现最先进的结果,尤其是当培训数据稀缺时。通常通过在模型的顶部添加特定于任务的层来微调下游任务。在本文中,我们关注基于方面的情感分析,其中涉及提取方面术语,类别和预测其相应的极性。特别是,我们对几个设置感兴趣。我们建议使用具有单向关注的生成语言模型将提取和预测任务重新调整为序列生成任务(除非另有说明,否则使用GPT2。这样,该模型就可以通过语言生成来完成任务,而无需培训特定于任务的层。我们对单任务极性预测的评估结果表明,我们的方法的表现优于先前的最先进的(基于BERT),而在平均绩效上,几乎没有射击和完整镜头设置。更重要的是,我们的生成方法大大降低了由低资源数据引起的模型差异。我们进一步证明,与以前的工作不同,提议的生成语言模型可以处理联合和多任务设置。我们观察到,当通过关节和多任务设置训练模型时,提出的序列生成方法可以进一步改善极性预测的性能。在类似的情感分析数据集(SST-2,SST-和OOS意图检测)上进行进一步评估,在几乎没有弹片的设置中验证了生成语言模型的优势和噪音稳健性。
Sentiment analysis is an important task in natural language processing. In recent works, pre-trained language models are often used to achieve state-of-the-art results, especially when training data is scarce. It is common to fine-tune on the downstream task, usually by adding task-specific layers on top of the model. In this paper, we focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities. In particular, we are interested in few-shot settings. We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention (GPT2 is used unless stated otherwise). This way, the model learns to accomplish the tasks via language generation without the need of training task-specific layers. Our evaluation results on the single-task polarity prediction show that our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings. More importantly, our generative approach significantly reduces the model variance caused by low-resource data. We further demonstrate that the proposed generative language model can handle joint and multi-task settings, unlike previous work. We observe that the proposed sequence generation method achieves further improved performances on polarity prediction when the model is trained via joint and multi-task settings. Further evaluation on similar sentiment analysis datasets, SST-2, SST- and OOS intent detection validates the superiority and noise robustness of generative language model in few-shot settings.