论文标题

流程噪音不变的平滑

Invariant Smoothing with low process noise

论文作者

Chauchat, Paul, Bonnabel, Silvere, Barrau, Axel

论文摘要

在本文中,我们解决了平滑 - 即在运动传感器非常准确的情况下,基于优化的基于优化的估算技术。我们的数学分析集中于运动传感器无限精确的困难极限情况,从而导致没有过程噪声。然后,配方退化,因为用作软约束的动力学模型成为平等约束,并且常规的平滑方法无法完全尊重它。相比之下,一旦发现了适当的谎言组嵌入,我们就理论上证明了不变的平滑性可以优雅地适应此极限情况,因为当噪声趋于零时,估计值往往与诱导的约束一致。惯性导航中最初对齐的重要问题的模拟表明,在使用精确的惯性测量单元(IMU)时,在低噪声设置中,不变的平滑性可能会与最先进的SmoOthers相比。

In this paper we address smoothing-that is, optimisation-based-estimation techniques for localisation problems in the case where motion sensors are very accurate. Our mathematical analysis focuses on the difficult limit case where motion sensors are infinitely precise, resulting in the absence of process noise. Then the formulation degenerates, as the dynamical model that serves as a soft constraint becomes an equality constraint, and conventional smoothing methods are not able to fully respect it. By contrast, once an appropriate Lie group embedding has been found, we prove theoretically that invariant smoothing gracefully accommodates this limit case in that the estimates tend to be consistent with the induced constraints when the noise tends to zero. Simulations on the important problem of initial alignement in inertial navigation show that, in a low noise setting, invariant smoothing may favorably compare to state-of-the-art smoothers when using precise inertial measurements units (IMU).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源