论文标题
用于使用光纤激光发射器系统自适应功率光束的自学AI控制器
The self-learning AI controller for adaptive power beaming with fiber-array laser transmitter system
论文作者
论文摘要
在这项研究中,我们考虑在存在大气湍流的情况下使用光纤阵列激光发射器系统进行自适应功率光束。为了优化通过大气中的功率转变,传统上是由随机并行梯度下降(SPGD)算法控制的,其中通过射频链接通过光学到电力的电源转换传感器提供控制反馈,该传感器附在合作目标上。 SPGD算法连续和随机地将电压应用于光纤阵列相位变速杆和光纤尖端定位器,以最大化传感器信号,即使用,所谓的“盲”优化原理。 与这种方法相反,用于综合最佳控制的人工智能(AI)控制系统可以利用可用于分析的各种学生或目标平面数据,包括波前传感器数据,照片伏特加阵列(PVA)数据,其他光学或大气层参数,并且潜在地可以消除SPGD的基于SPGD的基于spgd的基于SPGD的疲软。在这项研究中,使用目标平面PVA传感器数据作为其输入,由深神经网络(DNN)合成了最佳控制。与控制系统操作同步进行了DNN培训,并通过将小型扰动应用于DNN的输出来执行。这种方法不需要初始DNN的预训练,也不需要保证对系统性能的优化。所有理论结果均通过数值实验验证。
In this study we consider adaptive power beaming with fiber-array laser transmitter system in presence of atmospheric turbulence. For optimization of power transition through the atmosphere fiber-array is traditionally controlled by stochastic parallel gradient descent (SPGD) algorithm where control feedback is provided via radio frequency link by an optical-to-electrical power conversion sensor, attached to a cooperative target. The SPGD algorithm continuously and randomly perturbs voltages applied to fiber-array phase shifters and fiber tip positioners in order to maximize sensor signal, i.e. uses, so-called, "blind" optimization principle. In opposite to this approach a perspective artificially intelligent (AI) control systems for synthesis of optimal control can utilize various pupil- or target-plane data available for the analysis including wavefront sensor data, photo-voltaic array (PVA) data, other optical or atmospheric parameters, and potentially can eliminate well-known drawbacks of SPGD-based controllers. In this study an optimal control is synthesized by a deep neural network (DNN) using target-plane PVA sensor data as its input. A DNN training is occurred online in sync with control system operation and is performed by applying of small perturbations to DNN's outputs. This approach does not require initial DNN's pre-training as well as guarantees optimization of system performance in time. All theoretical results are verified by numerical experiments.