论文标题

SOK:使用功能加密保护机器学习的隐私:机遇和挑战

SoK: Privacy Preserving Machine Learning using Functional Encryption: Opportunities and Challenges

论文作者

Panzade, Prajwal, Takabi, Daniel

论文摘要

随着功能加密的出现,已经出现了加密数据计算的新可能性。功能加密使数据所有者能够授予第三方访问执行指定的计算,而无需透露其输入。与完全同态加密不同,它还提供了普通的计算结果。机器学习的普遍性导致在云计算环境中收集了大量私人数据。这引发了潜在的隐私问题,并需要更多私人和安全的计算解决方案。在保护隐私的机器学习(PPML)方面已做出了许多努力,以解决安全和隐私问题。有基于完全同态加密(FHE),安全多方计算(SMC)的方法,以及最近的功能加密(FE)。但是,与基于FHE的PPML方法相比,基于FE的PPML仍处于起步阶段,并且尚未得到太多关注。在本文中,我们基于FE总结文献中的最新作品提供了PPML作品的系统化。我们专注于PPML应用程序的内部产品FE和基于二次FE的机器学习模型。我们分析了可用的FE库的性能和可用性及其对PPML的应用。我们还讨论了基于FE的PPML方法的潜在方向。据我们所知,这是系统化基于FE的PPML方法的第一项工作。

With the advent of functional encryption, new possibilities for computation on encrypted data have arisen. Functional Encryption enables data owners to grant third-party access to perform specified computations without disclosing their inputs. It also provides computation results in plain, unlike Fully Homomorphic Encryption. The ubiquitousness of machine learning has led to the collection of massive private data in the cloud computing environment. This raises potential privacy issues and the need for more private and secure computing solutions. Numerous efforts have been made in privacy-preserving machine learning (PPML) to address security and privacy concerns. There are approaches based on fully homomorphic encryption (FHE), secure multiparty computation (SMC), and, more recently, functional encryption (FE). However, FE-based PPML is still in its infancy and has not yet gotten much attention compared to FHE-based PPML approaches. In this paper, we provide a systematization of PPML works based on FE summarizing state-of-the-art in the literature. We focus on Inner-product-FE and Quadratic-FE-based machine learning models for the PPML applications. We analyze the performance and usability of the available FE libraries and their applications to PPML. We also discuss potential directions for FE-based PPML approaches. To the best of our knowledge, this is the first work to systematize FE-based PPML approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源