论文标题
IMLE-NET:可解释的用于ECG分类的多级多渠道模型
IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification
论文作者
论文摘要
心血管疾病的早期发现对于有效治疗至关重要,心电图(ECG)对于诊断至关重要。近年来,基于深度学习的ECG信号分类方法的准确性已进步,以达到心脏病专家水平的表现。在临床环境中,心脏病专家根据标准的12通道心电图记录进行诊断。从多通道的角度对ECG记录的自动分析尚未得到足够的关注,因此从多通道的角度分析ECG录制至关重要。我们提出了一个模型,该模型利用标准12通道ECG记录中可用的多通道信息,并以节奏,节奏和频道级别学习模式。实验结果表明,我们的模型达到了宏观平均ROC-AUC得分为0.9216,平均精度为88.85 \%,PTB-XL数据集的最大F1得分为0.8057。将可解释模型的注意力可视化结果与心脏病专家的指南进行了比较,以验证正确性和可用性。
Early detection of cardiovascular diseases is crucial for effective treatment and an electrocardiogram (ECG) is pivotal for diagnosis. The accuracy of Deep Learning based methods for ECG signal classification has progressed in recent years to reach cardiologist-level performance. In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording. Automatic analysis of ECG recordings from a multiple-channel perspective has not been given enough attention, so it is essential to analyze an ECG recording from a multiple-channel perspective. We propose a model that leverages the multiple-channel information available in the standard 12-channel ECG recordings and learns patterns at the beat, rhythm, and channel level. The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85\%, and a maximum F1 score of 0.8057 on the PTB-XL dataset. The attention visualization results from the interpretable model are compared against the cardiologist's guidelines to validate the correctness and usability.