论文标题

双重非平稳性:从非组织混合物中盲目提取独立的非组织矢量/组件 - 算法

Double Nonstationarity: Blind Extraction of Independent Nonstationary Vector/Component from Nonstationary Mixtures -- Algorithms

论文作者

Koldovský, Zbyněk, Kautský, Václav, Tichavský, Petr

论文摘要

在本文中,将非组织混合和源模型组合在一起,以开发用于独立组件或矢量提取(ICE/IVE)的新的快速准确算法,其中一种代表了众所周知的Fastica的新扩展。该模型允许移动的利益源(SOI),其短间隔的分布可以是(非)圆形(非)高斯。假设提出了一个特定的高斯源模型,假设提出了三对角协方差矩阵结构。证明它在频域扬声器提取问题中是有益的。在模拟中验证了算法。与最先进的算法相比,它们在收敛速度和提取准确性方面表现出卓越的性能。

In this article, nonstationary mixing and source models are combined for developing new fast and accurate algorithms for Independent Component or Vector Extraction (ICE/IVE), one of which stands for a new extension of the well-known FastICA. This model allows for a moving source-of-interest (SOI) whose distribution on short intervals can be (non-)circular (non-)Gaussian. A particular Gaussian source model assuming tridiagonal covariance matrix structures is proposed. It is shown to be beneficial in the frequency-domain speaker extraction problem. The algorithms are verified in simulations. In comparison to the state-of-the-art algorithms, they show superior performance in terms of convergence speed and extraction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源