论文标题
几乎是 - 富曼尼亚结构的一般nil弱和可解决的近似值
General Nilpotent and Solvable Approximations of Almost-Riemannian Structures
论文作者
论文摘要
首先表明,在单个点上,几乎是riemannian结构的nilpotent或可解的近似始终是谎言组或同质空间上的几乎线性 - 利曼尼亚结构。然后在各个维度上研究了几乎利曼结构的通用特性,并确定了通用的nilpotent和可溶解近似值。
It is first shown that the nilpotent or the solvable approximation of an almost-Riemannian structure at a singular point is always a linear almost-Riemannian structure on a Lie group or a homogeneous space. The generic properties of almost-Riemannian structures are then investigated in all dimensions and the generic nilpotent and solvable approximations are identified.