论文标题

4D共形场理论中费米子高自旋电流的三分函数

Three-point functions of fermionic higher-spin currents in 4D conformal field theory

论文作者

Buchbinder, Evgeny I., Stone, Benjamin J.

论文摘要

我们研究了具有费米子高旋转电流$ q_ {α(2k)\dotα} $的四维形成共形场理论的特性。使用计算方法,我们检查了两个费米子高旋转电流的三点相关函数中包含的独立张量结构的数量与保守的矢量电流$ v_ {m} $,以及具有能量 - 元素张量$ t_ {m n} $。特别是,$ k = 1 $的情况对应于“超对称性”电流,也就是说,是一种具有与超对称电流相同的属性的费米子保守的电流,该电流出现在$ \ Mathcal {n} = 1 $ superConformal Formal Field Theories中。但是,我们表明,通常,三点相关函数$ \ langle q q q t \ rangle $,$ \ langle \ bar {q} q v \ rangle $和$ \ langle \ bar {q} q t \ rangle $与$ \ \ rangle $不一致

We investigate the properties of a four-dimensional conformal field theory possessing a fermionic higher-spin current $Q_{α(2k) \dotα}$. Using a computational approach, we examine the number of independent tensor structures contained in the three-point correlation functions of two fermionic higher-spin currents with the conserved vector current $V_{m}$, and with the energy-momentum tensor $T_{m n}$. In particular, the $k = 1$ case corresponds to a "supersymmetry-like" current, that is, a fermionic conserved current with identical properties to the supersymmetry current which appears in $\mathcal{N} = 1$ superconformal field theories. However, we show that in general, the three-point correlation functions $\langle Q Q T\rangle $, $\langle \bar{Q} Q V\rangle $ and $\langle \bar{Q} Q T\rangle $ are not consistent with $\mathcal{N}=1$ supersymmetry

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源