论文标题

HFL在Semeval-2022任务8:由语言学启发的回归模型,具有数据增强的多语言新闻相似性

HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity

论文作者

Xu, Zihang, Yang, Ziqing, Cui, Yiming, Chen, Zhigang

论文摘要

本文介绍了我们为Semeval-2022任务设计的系统8:多语言新闻文章的相似性。我们提出了一种以语言为风格的模型,该模型培训了一些特定于任务的策略。我们系统的主要技术是:1)数据增强,2)多标签损失,3)改编的R-Drop,4)用头尾组合重建样品。我们还简要分析了一些负面方法,例如两个塔楼架构。我们的系统在排行榜上排名第一,同时在官方评估集中获得了Pearson的相关系数为0.818。

This paper describes our system designed for SemEval-2022 Task 8: Multilingual News Article Similarity. We proposed a linguistics-inspired model trained with a few task-specific strategies. The main techniques of our system are: 1) data augmentation, 2) multi-label loss, 3) adapted R-Drop, 4) samples reconstruction with the head-tail combination. We also present a brief analysis of some negative methods like two-tower architecture. Our system ranked 1st on the leaderboard while achieving a Pearson's Correlation Coefficient of 0.818 on the official evaluation set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源