论文标题

分层最佳功率流,并提高梯度评估

Hierarchical Optimal Power Flow with Improved Gradient Evaluation

论文作者

Liang, Heng, Zhou, Xinyang, Zhao, Changhong

论文摘要

解决交流电流最佳功率流(AC-OPF)的现有算法通常利用线性近似来简化系统模型并加速计算。在本文中,我们改进了最近的层次OPF算法,该算法依靠在线性分布功率流模型中评估的原始双重梯度上。具体而言,我们确定了由模型线性化引起的违反电压的风险,并提出了一种更准确的梯度评估方法来消除这种风险。我们进一步开发了一种基于拟议的梯度评估方法来求解OPF的层次原始二次算法。 IEEE网络上的数值结果表明,我们的算法可以以令人满意的计算效率增强电压安全性。

Existing algorithms to solve alternating-current optimal power flow (AC-OPF) often exploit linear approximations to simplify system models and accelerate computations. In this paper, we improve a recent hierarchical OPF algorithm, which rested on primal-dual gradients evaluated in a linearized distribution power flow model. Specifically, we identify a risk of voltage violation arising from the model linearization, and propose a more accurate gradient evaluation method to eliminate that risk. We further develop a hierarchical primal-dual algorithm to solve OPF based on the proposed gradient evaluation method. Numerical results on IEEE networks show that our algorithm can enhance voltage safety with satisfactory computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源