论文标题
通过小组精英选择适应有效的突变率
Effective Mutation Rate Adaptation through Group Elite Selection
论文作者
论文摘要
进化算法对突变率(MR)敏感;该参数的单个值没有跨域的效果很好。已经提出了自适应的MR方法,但它们往往很脆弱:有时它们将MR衰减至零,从而停止进化。为了使自适应MR稳健,本文介绍了突变率(GESMR)算法的群体精英选择。 GESMR共同发展了一系列解决方案和MRS人群,因此每个MR都被分配给一组解决方案。在进化过程中,该组中最佳的突变变化而不是平均突变变化,从而避免了MR问题消失。在相同数量的函数评估中,几乎没有开销,GESMR收敛速度比以前的方法更快,在各种连续测试优化问题上的解决方案。 GESMR还可以很好地扩展到高维神经进化,以进行监督的图像分类任务和加强学习控制任务。值得注意的是,GESMR产生的MRS从长远来看是最佳的,如通过全面的外观网格搜索所证明的那样。因此,GESMR及其理论和经验分析表明,如何利用自我适应以提高进化计算的多种应用中的性能。
Evolutionary algorithms are sensitive to the mutation rate (MR); no single value of this parameter works well across domains. Self-adaptive MR approaches have been proposed but they tend to be brittle: Sometimes they decay the MR to zero, thus halting evolution. To make self-adaptive MR robust, this paper introduces the Group Elite Selection of Mutation Rates (GESMR) algorithm. GESMR co-evolves a population of solutions and a population of MRs, such that each MR is assigned to a group of solutions. The resulting best mutational change in the group, instead of average mutational change, is used for MR selection during evolution, thus avoiding the vanishing MR problem. With the same number of function evaluations and with almost no overhead, GESMR converges faster and to better solutions than previous approaches on a wide range of continuous test optimization problems. GESMR also scales well to high-dimensional neuroevolution for supervised image-classification tasks and for reinforcement learning control tasks. Remarkably, GESMR produces MRs that are optimal in the long-term, as demonstrated through a comprehensive look-ahead grid search. Thus, GESMR and its theoretical and empirical analysis demonstrate how self-adaptation can be harnessed to improve performance in several applications of evolutionary computation.