论文标题

UNIDU:建立统一的生成对话理解框架

UniDU: Towards A Unified Generative Dialogue Understanding Framework

论文作者

Chen, Zhi, Chen, Lu, Chen, Bei, Qin, Libo, Liu, Yuncong, Zhu, Su, Lou, Jian-Guang, Yu, Kai

论文摘要

随着预训练的语言模型的发展,对话理解(DU)已经看到了杰出的成功。但是,当前的DU方法通常为每个不同的DU任务采用独立模型,而无需考虑跨不同任务的共同知识。在本文中,我们提出了一个统一的生成对话理解框架,名为{\ em unidu},以实现跨不同DU任务的有效信息交流。在这里,我们将所有DU任务重新制定为一个基于统一的快速生成模型范式。更重要的是,引入了一种新颖的模型多任务培训策略(MATS),以动态调整各种任务的权重,以根据每个任务的性质和可用数据在培训期间进行最佳知识共享。涵盖五个基本DU任务的十个DU数据集的实验表明,在所有任务上,提议的UNIDU框架在很大程度上优于特定于任务精心设计的方法。 MATS还揭示了这些任务的知识共享结构。最后,Unidu在看不见的对话领域中获得了有希望的表现,显示了概括的巨大潜力。

With the development of pre-trained language models, remarkable success has been witnessed in dialogue understanding (DU). However, current DU approaches usually employ independent models for each distinct DU task without considering shared knowledge across different DU tasks. In this paper, we propose a unified generative dialogue understanding framework, named {\em UniDU}, to achieve effective information exchange across diverse DU tasks. Here, we reformulate all DU tasks into a unified prompt-based generative model paradigm. More importantly, a novel model-agnostic multi-task training strategy (MATS) is introduced to dynamically adapt the weights of diverse tasks for best knowledge sharing during training, based on the nature and available data of each task. Experiments on ten DU datasets covering five fundamental DU tasks show that the proposed UniDU framework largely outperforms task-specific well-designed methods on all tasks. MATS also reveals the knowledge-sharing structure of these tasks. Finally, UniDU obtains promising performance in the unseen dialogue domain, showing the great potential for generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源