论文标题
共同:学习的实例表示,用于半监督的混凝土骨料颗粒的综合分割
ConsInstancy: Learning Instance Representations for Semi-Supervised Panoptic Segmentation of Concrete Aggregate Particles
论文作者
论文摘要
我们提出了一种基于同伴正则化的半监督方法,用于综合式分割,这是一种半监督学习的新型策略。它通过在培训期间在训练过程中实现预测的实例表示和语义分割之间的一致性来利用完全未标记的数据,以提高细分性能。为此,我们还提出了新型的实例表示形式,可以通过完全卷积网络(FCN)的一个简单的前进路径来预测,并提供了方便且简单的训练框架,以进行泛滥分割。更具体地说,我们提出了三维实例方向图作为中间表示形式的预测和两个互补的距离变换图作为最终表示形式,为泛型分割提供了独特的实例表示。我们对两个具有挑战性的数据集,硬化和新鲜混凝土的两个具有挑战性的数据集进行了测试,后者是由作者在本文中提出的,证明了我们方法的有效性,表现出了通过最先进的方法对半监测细分的最先进方法所获得的结果。特别是,我们能够证明,通过仅使用仅使用标记数据的完全监督的培训,通过在半监督方法中利用完全未标记的数据提高了5%。此外,我们超过了最先进的半监督方法实现的OA,高达1.5%。
We present a semi-supervised method for panoptic segmentation based on ConsInstancy regularisation, a novel strategy for semi-supervised learning. It leverages completely unlabelled data by enforcing consistency between predicted instance representations and semantic segmentations during training in order to improve the segmentation performance. To this end, we also propose new types of instance representations that can be predicted by one simple forward path through a fully convolutional network (FCN), delivering a convenient and simple-to-train framework for panoptic segmentation. More specifically, we propose the prediction of a three-dimensional instance orientation map as intermediate representation and two complementary distance transform maps as final representation, providing unique instance representations for a panoptic segmentation. We test our method on two challenging data sets of both, hardened and fresh concrete, the latter being proposed by the authors in this paper demonstrating the effectiveness of our approach, outperforming the results achieved by state-of-the-art methods for semi-supervised segmentation. In particular, we are able to show that by leveraging completely unlabeled data in our semi-supervised approach the achieved overall accuracy (OA) is increased by up to 5% compared to an entirely supervised training using only labeled data. Furthermore, we exceed the OA achieved by state-of-the-art semi-supervised methods by up to 1.5%.