论文标题
一项关于单层CA(OH)2和mg(OH)2的电子,热力学和介电特性的第一原理研究
A First-Principles Study on Electronic, Thermodynamic, and Dielectric Properties of Monolayer Ca(OH)2 and Mg(OH)2
论文作者
论文摘要
我们执行第一原理计算,以探索二维(2D)层的碱性氢氧化物CA(OH)2和Mg(OH)2的电子,热力学和介电特性。我们计算单层的晶格参数,去角质能和声子光谱,还研究了这些单层的热性能,例如Helmholtz自由能,恒定体积的热容量和熵作为温度的功能。我们采用密度函数扰动理论(DFPT)来计算散装和单层样品的平面内和平面外静态介电常数。我们使用HSE06函数计算带隙和电子亲和力值,并分别与HFS2和WS2合并时,用单层Ca(OH)2和Mg(OH)2作为介电的晶体管泄漏电流密度为介电。我们的结果表明,双层毫克(OH)2(EOT〜0.60 nm)在水中溶解度较低,提供了比BiLayer CA(OH)2(eot〜0.56 nm)的平面外介电常数和较低的泄漏电流。此外,平面外介电常数,泄漏电流和Mg(OH)2的EOT均优于双层H-BN。我们验证了安德森规则的适用性,并得出结论,CA(OH)2和Mg(OH)2的双层分别与晶格匹配的单层HFS2和WS2配对,是有效的结构组合,可以导致创新的多功能型野蛮效应晶体管(FETS)的创新性多发性组合。
We perform first-principles calculations to explore electronic, thermodynamic, and dielectric properties of two-dimensional (2D) layered, alkaline-earth hydroxides Ca(OH)2 and Mg(OH)2. We calculate the lattice parameters, exfoliation energies, and phonon spectra of monolayers and also investigate the thermal properties of these monolayers such as Helmholtz free energy, heat capacity at constant volume, and entropy as a function of temperature. We employ Density Functional Perturbation Theory (DFPT) to calculate the in-plane and out-of-plane static dielectric constant of the bulk and monolayer samples. We compute the bandgap and electron affinity values using the HSE06 functional and estimate the leakage current density of transistors with monolayer Ca(OH)2 and Mg(OH)2 as dielectrics when combined with HfS2 and WS2, respectively. Our results show that bilayer Mg(OH)2 (EOT ~ 0.60 nm) with a lower solubility in water, offers higher out-of-plane dielectric constants and lower leakage currents than bilayer Ca(OH)2 (EOT ~ 0.56 nm). Additionally, the out-of-plane dielectric constant, leakage current, and EOT of Mg(OH)2 outperform bilayer h-BN. We verify the applicability of Anderson's rule and conclude that bilayers of Ca(OH)2 and Mg(OH)2 respectively paired with lattice-matched monolayer HfS2 and WS2 are effective structural combinations that could lead to the development of innovative multi-functional Field Effect Transistors (FETs).