论文标题

实际订单的总差异,并应用于学习方案中的损失功能

Real order total variation with applications to the loss functions in learning schemes

论文作者

Liu, Pan, Lu, Xin Yang, He, Kunlun

论文摘要

损失功能是现代数据驱动方法的重要组成部分,例如双层培训方案和机器学习。在本文中,我们提出了一个损失功能,该损失功能由$ r $ order(an) - 异位总变量半 - $ TV^r $,$ r \ in \ Mathbb {r}^+$,通过Riemann-Liouville(R-L)分数衍生物定义。我们专注于研究关键的理论特性,例如相对于此类损失功能的衍生$ r $的功能和顺序,较低的半持续性和紧凑性。

Loss function are an essential part in modern data-driven approach, such as bi-level training scheme and machine learnings. In this paper we propose a loss function consisting of a $r$-order (an)-isotropic total variation semi-norms $TV^r$, $r\in \mathbb{R}^+$, defined via the Riemann-Liouville (R-L) fractional derivative. We focus on studying key theoretical properties, such as the lower semi-continuity and compactness with respect to both the function and the order of derivative $r$, of such loss functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源