论文标题

注意U-NET作为地下水预测的替代模型

Attention U-Net as a surrogate model for groundwater prediction

论文作者

Taccari, Maria Luisa, Nuttall, Jonathan, Chen, Xiaohui, Wang, He, Minnema, Bennie, Jimack, Peter K.

论文摘要

地下水流量的数值模拟用于通过近似基本地下水物理方程的溶液来分析和预测含水层系统对其状态变化的响应。最常用和经典的方法(例如有限差异(FD)和有限元(Fe)方法)使用与高计算成本相关的迭代求解器。这项研究提出了一个基于物理的卷积编码器神经网络作为替代模型,以快速计算地下水系统的响应。在跨域映射中保持有力的诺言,编码器 - 模块网络适用于学习物理系统的复杂输入输出映射。该手稿提出了一个注意力U-NET模型,该模型试图捕获地下水系统的基本输入输出关系,并在整个域中在整个域中生成一组物理参数和边界条件的液压头解决方案。该模型准确地预测了高度异质地下水系统的稳态响应,鉴于最多3孔作为输入的位置和压电头。该网络仅在域的相关部分中注意,而生成的液压头场非常详细地对应于目标样本。即使相对于有限差近似值,提出的模型也被证明比比较最先进的数值求解器要快得多,因此为进一步开发了提出的网络作为地下水预测的替代模型提供了基础。

Numerical simulations of groundwater flow are used to analyze and predict the response of an aquifer system to its change in state by approximating the solution of the fundamental groundwater physical equations. The most used and classical methodologies, such as Finite Difference (FD) and Finite Element (FE) Methods, use iterative solvers which are associated with high computational cost. This study proposes a physics-based convolutional encoder-decoder neural network as a surrogate model to quickly calculate the response of the groundwater system. Holding strong promise in cross-domain mappings, encoder-decoder networks are applicable for learning complex input-output mappings of physical systems. This manuscript presents an Attention U-Net model that attempts to capture the fundamental input-output relations of the groundwater system and generates solutions of hydraulic head in the whole domain given a set of physical parameters and boundary conditions. The model accurately predicts the steady state response of a highly heterogeneous groundwater system given the locations and piezometric head of up to 3 wells as input. The network learns to pay attention only in the relevant parts of the domain and the generated hydraulic head field corresponds to the target samples in great detail. Even relative to coarse finite difference approximations the proposed model is shown to be significantly faster than a comparative state-of-the-art numerical solver, thus providing a base for further development of the presented networks as surrogate models for groundwater prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源