论文标题
MR-INET体育馆:用于嵌入式软件定义的无线电上深钢筋学习的边缘部署框架
MR-iNet Gym: Framework for Edge Deployment of Deep Reinforcement Learning on Embedded Software Defined Radio
论文作者
论文摘要
动态资源分配在下一代智能无线通信系统中起着至关重要的作用。机器学习已被利用为在此领域中大步发展的强大工具。在大多数情况下,由于这些解决方案的硬件部署的挑战性质,进度仅限于模拟。在本文中,我们首次设计和部署了基于GPU嵌入式软件定义的无线电(SDRS)的基于基于电源控制剂(DRL)的功率控制剂。为此,我们提出了一个端到端的框架(MR-INET健身房),在该框架中,模拟套件和嵌入式SDR开发工作凝聚力以克服现实世界实施障碍。为了证明可行性,我们考虑了基于代码分段多个访问(DS-CDMA)的分布式功率控制的问题。我们首先构建了与OpenAI健身环境相互作用的DS-CDMA NS3模块。接下来,在复制我们的硬件测试台的情况下,我们在此NS3-GYM模拟环境中训练功率控制DRL代理。接下来,对于Edge(嵌入式设备)部署,对经过训练的模型进行了优化,以实时操作而不会丢失性能。基于硬件的评估验证了DRL代理比传统分布式约束功率控制(DCPC)算法的效率。更重要的是,作为主要目标,这是第一项建立了部署DRL以提供优化的分布式资源分配的可行性,以用于GPU包含的无线电的下一代。
Dynamic resource allocation plays a critical role in the next generation of intelligent wireless communication systems. Machine learning has been leveraged as a powerful tool to make strides in this domain. In most cases, the progress has been limited to simulations due to the challenging nature of hardware deployment of these solutions. In this paper, for the first time, we design and deploy deep reinforcement learning (DRL)-based power control agents on the GPU embedded software defined radios (SDRs). To this end, we propose an end-to-end framework (MR-iNet Gym) where the simulation suite and the embedded SDR development work cohesively to overcome real-world implementation hurdles. To prove feasibility, we consider the problem of distributed power control for code-division multiple access (DS-CDMA)-based LPI/D transceivers. We first build a DS-CDMA ns3 module that interacts with the OpenAI Gym environment. Next, we train the power control DRL agents in this ns3-gym simulation environment in a scenario that replicates our hardware testbed. Next, for edge (embedded on-device) deployment, the trained models are optimized for real-time operation without loss of performance. Hardware-based evaluation verifies the efficiency of DRL agents over traditional distributed constrained power control (DCPC) algorithm. More significantly, as the primary goal, this is the first work that has established the feasibility of deploying DRL to provide optimized distributed resource allocation for next-generation of GPU-embedded radios.