论文标题

超声信号处理:从模型到深度学习

Ultrasound Signal Processing: From Models to Deep Learning

论文作者

Luijten, Ben, Chennakeshava, Nishith, Eldar, Yonina C., Mischi, Massimo, van Sloun, Ruud J. G.

论文摘要

医疗超声成像在很大程度上依赖于高质量的信号处理来提供可靠且可解释的图像重建。通常,从物理原理得出的重建算法。这些算法依赖于基础测量模型的假设和近似值,设置中的图像质量限制是这些假设分解的。相反,基于统计建模,仔细的参数调整或通过增加模型复杂性的更复杂的解决方案可能对不同的环境敏感。最近,以数据驱动的方式优化的基于深度学习的方法已获得流行。这些模型不足的技术通常依赖于通用模型结构,并且需要大量的训练数据来收敛到强大的解决方案。一个相对较新的范式结合了两者的力量:利用数据驱动的深度学习以及利用领域知识。这些基于模型的解决方案比传统的神经网络产生高鲁棒性,并且需要更少的参数和训练数据。在这项工作中,我们概述了最近的文献中这些技术,并讨论了各种超声应用程序。我们旨在激发读者在这一领域进行进一步研究,并解决超声信号处理领域的机会。我们以对医学超声的基于模型的深度学习技术的未来观点结论。

Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions. Conventionally, reconstruction algorithms where derived from physical principles. These algorithms rely on assumptions and approximations of the underlying measurement model, limiting image quality in settings were these assumptions break down. Conversely, more sophisticated solutions based on statistical modelling, careful parameter tuning, or through increased model complexity, can be sensitive to different environments. Recently, deep learning based methods, which are optimized in a data-driven fashion, have gained popularity. These model-agnostic techniques often rely on generic model structures, and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge. These model-based solutions yield high robustness, and require less parameters and training data than conventional neural networks. In this work we provide an overview of these techniques from recent literature, and discuss a wide variety of ultrasound applications. We aim to inspire the reader to further research in this area, and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on model-based deep learning techniques for medical ultrasound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源