论文标题

A3CLNN:用于多源遥感数据分类的空间,光谱和多尺度注意Convlstm神经网络

A3CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification

论文作者

Li, Heng-Chao, Hu, Wen-Shuai, Li, Wei, Li, Jun, Du, Qian, Plaza, Antonio

论文摘要

有效利用信息多种数据源的问题已成为遥感中的一个相关但充满挑战的研究主题。在本文中,我们提出了一种利用两个数据源的互补性的新方法:高光谱图像(HSIS)以及光检测和范围(LIDAR)数据。具体而言,我们开发了一个新的双通道空间,光谱和多尺度注意卷积长的短期记忆神经网络(称为双通道A3CLNN),以进行特征提取和分类多源遥感数据。首先是为HSI和LIDAR数据设计的空间,光谱和多尺度注意机制,以学习光谱和空间增强功能表示形式,并代表不同类别的多尺度信息。在设计的融合网络中,一种新型的复合注意力学习机制(与三级融合策略结合在一起)用于将这两个数据源中的特征充分整合。最后,受到转移学习思想的启发,一种新颖的逐步训练策略旨在产生最终的分类结果。我们在多个多源遥感数据集上进行的实验结果表明,新提出的双通道A3CLNN比其他最先进的方法具有更好的功能表示能力(导致更具竞争性的分类性能)。

The problem of effectively exploiting the information multiple data sources has become a relevant but challenging research topic in remote sensing. In this paper, we propose a new approach to exploit the complementarity of two data sources: hyperspectral images (HSIs) and light detection and ranging (LiDAR) data. Specifically, we develop a new dual-channel spatial, spectral and multiscale attention convolutional long short-term memory neural network (called dual-channel A3CLNN) for feature extraction and classification of multisource remote sensing data. Spatial, spectral and multiscale attention mechanisms are first designed for HSI and LiDAR data in order to learn spectral- and spatial-enhanced feature representations, and to represent multiscale information for different classes. In the designed fusion network, a novel composite attention learning mechanism (combined with a three-level fusion strategy) is used to fully integrate the features in these two data sources. Finally, inspired by the idea of transfer learning, a novel stepwise training strategy is designed to yield a final classification result. Our experimental results, conducted on several multisource remote sensing data sets, demonstrate that the newly proposed dual-channel A3CLNN exhibits better feature representation ability (leading to more competitive classification performance) than other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源