论文标题

直接检测嵌入原星盘中的低质量行星的信封和TW Hydrae的外壳

Directly Detecting the Envelopes of Low-mass Planets Embedded In Protoplanetary Discs and The Case For TW Hydrae

论文作者

Zhu, Zhaohuan, Bailey, Avery, Macías, Enrique, Muto, Takayuki, Andrews, Sean M.

论文摘要

尽管开发了许多方法可以在原星盘中找到年轻的大型行星,但直接检测嵌入在椎间盘中的低质量行星是一项挑战。另一方面,核心核心理论表明,在开尔文 - 霍尔姆尔兹(KH)收缩阶段可能有大量嵌入的低质量年轻行星。我们同时采用1-D模型和3-D模拟来计算具有不同亮度性的低质量核(几至数十至数十至数十美元的$ m _ {\ oplus} $),并在无线电波长下得出其热通量。我们发现,当背景光盘在无线电波长上光学上很薄时,无线电观察值可以通过圆盘观察并探测行星丘陵球内的密集信封。当观察到光盘的分辨率达到一个圆盘尺度的高度时,围绕10 m $ _ {\ oplus} $ core的无线电热通量比背景光盘的通量高10%以上。发射区域可以扩展和拉长。最后,我们的模型表明,Alma揭示的TW Hydrae圆盘中的52 au的Au尺度团块与嵌入式10-20 $ M _ {\ oplus} $行星的信封是一致的,可以解释检测到的磁通,光谱索引倾角,频谱倾角和启发性螺旋。该观察结果也与经过卵石积聚的行星一致。未来的Alma和NGVLA观察结果可能直接揭示出更多这样的低质量行星,从而使我们能够使用嵌入的“ Protoplanet”种群研究核心的生长,甚至可以重建行星形成历史。

Despite many methods developed to find young massive planets in protoplanetary discs, it is challenging to directly detect low-mass planets that are embedded in discs. On the other hand, the core-accretion theory suggests that there could be a large population of embedded low-mass young planets at the Kelvin-Helmholtz (KH) contraction phase. We adopt both 1-D models and 3-D simulations to calculate the envelopes around low-mass cores (several to tens of $M_{\oplus}$) with different luminosities, and derive their thermal fluxes at radio wavelengths. We find that, when the background disc is optically thin at radio wavelengths, radio observations can see through the disc and probe the denser envelope within the planet's Hill sphere. When the optically thin disc is observed with the resolution reaching one disc scale height, the radio thermal flux from the planetary envelope around a 10 M$_{\oplus}$ core is more than 10 % higher than the flux from the background disc. The emitting region can be extended and elongated. Finally, our model suggests that the au-scale clump at 52 au in the TW Hydrae disc revealed by ALMA is consistent with the envelope of an embedded 10-20 $M_{\oplus}$ planet, which can explain the detected flux, the spectral index dip, and the tentative spirals. The observation is also consistent with the planet undergoing pebble accretion. Future ALMA and ngVLA observations may directly reveal more such low-mass planets, enabling us to study core growth and even reconstruct the planet formation history using the embedded "protoplanet" population.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源