论文标题

通过深度接触感测的改进对象姿势估计

Improved Object Pose Estimation via Deep Pre-touch Sensing

论文作者

Lancaster, Patrick, Yang, Boling, Smith, Joshua R.

论文摘要

对于某些操纵任务,对象姿势姿势估计的头部安装相机可能不够准确。这至少部分是由于我们无法完美校准当今高度自由机器人臂的坐标框架,该机器人将头连接到最终效果。我们提出了一个新颖的框架,结合了预触觉感测和深度学习,以有效的方式更准确地估计姿势。使用预触摸感应使我们的方法可以直接将对象定位在机器人的末端效应器中,从而避免了由臂的错误校准引起的错误。我们不要求机器人使用其预触摸传感器扫描整个对象,而是使用深层神经网络来检测包含独特几何特征的对象区域。通过将预触觉感知到这些区域,机器人可以更有效地收集所需的信息来调整其原始姿势估计。我们的区域检测网络是使用新的数据集培训的,该数据集包含包含广泛变化的几何形状的对象,并以不存在人类偏见的可扩展方式进行了标记。该数据集适用于任何涉及预触觉传感器收集几何信息的任务,并已公开可用。我们通过将机器人重新估计许多不同几何物体的姿势来评估我们的框架。与两种更简单的区域建议方法相比,我们发现我们的深神经网络的性能明显更好。此外,我们发现在一系列扫描后,物体通常可以定位于其真实位置的0.5 cm之内。我们还观察到,在收集一次快速扫描后,通常可以显着改善原始姿势估计值。

For certain manipulation tasks, object pose estimation from head-mounted cameras may not be sufficiently accurate. This is at least in part due to our inability to perfectly calibrate the coordinate frames of today's high degree of freedom robot arms that link the head to the end-effectors. We present a novel framework combining pre-touch sensing and deep learning to more accurately estimate pose in an efficient manner. The use of pre-touch sensing allows our method to localize the object directly with respect to the robot's end effector, thereby avoiding error caused by miscalibration of the arms. Instead of requiring the robot to scan the entire object with its pre-touch sensor, we use a deep neural network to detect object regions that contain distinctive geometric features. By focusing pre-touch sensing on these regions, the robot can more efficiently gather the information necessary to adjust its original pose estimate. Our region detection network was trained using a new dataset containing objects of widely varying geometries and has been labeled in a scalable fashion that is free from human bias. This dataset is applicable to any task that involves a pre-touch sensor gathering geometric information, and has been made publicly available. We evaluate our framework by having the robot re-estimate the pose of a number of objects of varying geometries. Compared to two simpler region proposal methods, we find that our deep neural network performs significantly better. In addition, we find that after a sequence of scans, objects can typically be localized to within 0.5 cm of their true position. We also observe that the original pose estimate can often be significantly improved after collecting a single quick scan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源