论文标题

从$ {\ sf rcd}(k,n)$到$ {\ sf cat}(0)$ spaces和相关结果

On the regularity of harmonic maps from ${\sf RCD}(K,N)$ to ${\sf CAT}(0)$ spaces and related results

论文作者

Gigli, Nicola

论文摘要

对于$ {\ sf rcd}(k,k,n)$ {$ space $ {\ rm x} $ to $ {\ sf cat}(0)$ space $ {\ rm y y} $ y lipschitz eStimate eStimate eastimate eastimate eastimate eastimate eastimate eastimate eastimate eastimate lipschitz eStimate eastimate eastimate Evors lip}(u | _b)\ leq \ frac {c(k^-r^2,n)} r \ inf _ {{{\ sf o} \ in {\ rm y}}} \,\ sqrt {\ sqrt {\ frac1 {\ frac1 {\ frac1 { d} _ {\ rm y}^2(u(\ cdot),{\ sf o})\,{\ rm d} {\ mathfrak m}},\ qquad \ qquad \ forall 2b \ forall 2b \ subset u \ \],其中$ r \ in(0,r)in(0,r)in(0,r)是$ b $。这是通过将古典Moser的迭代相结合的,这是我们得出的Bochner类型的不平等现象(在最近的Zhang-Zhu最近作品的指导下)和在这里也建立的反向庞加莱不平等。我们估计的直接后果是在$ k = 0 $的情况下,lioville-yau型定理。 在我们为证明开发的成分中,一般$ {\ sf rcd} $空间有效的变异原则特别相关。它可以大致说明为:如果$({\ rm x},{\ sf d},{\ mathfrak m})​​$是$ {\ sf rcd}(k,\ infty)$ and $ f \ in C_b in C_b({\ rm x} $美元(f_t)_*{\ Mathfrak M} \ leq E^{t(c+2k^ - {\ sf-osc}(f))} {\ Mathfrak m},\ qquad \ text {where} \ qquad {where} \ qquad {\ qquad {\ sf} {\ sf}(\ sf}(f) \]这里存在的存在,没有任何紧凑的假设,并且应该以与常规的Lagrangian流量和最佳地图相机的方式进行唯一性(并且与这两个概念有关)。 最后,我们还获得了上述空间之间Lipschitz地图的Rademacher型结果。

For an harmonic map $u$ from a domain $U\subset{\rm X}$ in an ${\sf RCD}(K,N)$ space ${\rm X}$ to a ${\sf CAT}(0)$ space ${\rm Y}$ we prove the Lipschitz estimate \[ {\rm Lip}(u|_B)\leq \frac {C(K^-R^2,N)}r\inf_{{\sf o}\in {\rm Y}}\,\sqrt{\frac1{{\mathfrak m}(2B)}\int_{2B}{\sf d}_{\rm Y}^2(u(\cdot),{\sf o})\, {\rm d}{\mathfrak m}}, \qquad \forall 2B\subset U \] where $r\in(0,R)$ is the radius of $B$. This is obtained by combining classical Moser's iteration, a Bochner-type inequality that we derive (guided by recent works of Zhang-Zhu) together with a reverse Poincaré inequality that is also established here. A direct consequence of our estimate is a Lioville-Yau type theorem in the case $K=0$. Among the ingredients we develop for the proof, a variational principle valid in general ${\sf RCD}$ spaces is particularly relevant. It can be roughly stated as: if $({\rm X},{\sf d},{\mathfrak m})$ is ${\sf RCD}(K,\infty)$ and $f\in C_b({\rm X})$ is so that $Δf\leq C$ for some constant $C>0$, then for every $t>0$ and ${\mathfrak m}$-a.e.\ $x\in{\rm X}$ there is a unique minimizer $F_t(x)$ for $ y\ \mapsto\ f(y)+\frac{{\sf d}^2(x,y)}{2t} $ and the map $F_t$ satisfies \[ (F_t)_*{\mathfrak m}\leq e^{t(C+2K^-{\sf Osc}(f))}{\mathfrak m},\qquad\text{where}\qquad {\sf Osc}(f):=\sup f-\inf f. \] Here existence is in place without any sort of compactness assumption and uniqueness should be intended in a sense analogue to that in place for Regular Lagrangian Flows and Optimal Maps (and is related to both these concepts). Finally, we also obtain a Rademacher-type result for Lipschitz maps between spaces as above.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源