论文标题

在星空下跳舞:在星光下录像

Dancing under the stars: video denoising in starlight

论文作者

Monakhova, Kristina, Richter, Stephan R., Waller, Laura, Koltun, Vladlen

论文摘要

由于低光子计数,弱光成像极具挑战性。使用敏感的CMOS摄像机,目前有可能在月光下在夜间拍摄视频(0.05-0.3 Lux Illumination)。在本文中,我们首次在星光下展示了星光下的影片视频(不存在月亮,$ <$ 0.001勒克斯)。为了实现这一目标,我们开发了一个基于GAN的物理噪声模型,以更准确地代表最低光级别的相机噪声。使用此噪声模型,我们使用模拟嘈杂的视频剪辑和真实的嘈杂静止图像来训练视频Denoiser。我们捕获了一个5-10 fps视频数据集,其显着运动约为0.6-0.7 millilux,没有主动照明。与替代方法相比,我们在最低的光级别上实现了改进的视频质量,这是第一次在星光下进行的逼真的视频。

Imaging in low light is extremely challenging due to low photon counts. Using sensitive CMOS cameras, it is currently possible to take videos at night under moonlight (0.05-0.3 lux illumination). In this paper, we demonstrate photorealistic video under starlight (no moon present, $<$0.001 lux) for the first time. To enable this, we develop a GAN-tuned physics-based noise model to more accurately represent camera noise at the lowest light levels. Using this noise model, we train a video denoiser using a combination of simulated noisy video clips and real noisy still images. We capture a 5-10 fps video dataset with significant motion at approximately 0.6-0.7 millilux with no active illumination. Comparing against alternative methods, we achieve improved video quality at the lowest light levels, demonstrating photorealistic video denoising in starlight for the first time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源