论文标题

团队运动中的光学跟踪

Optical tracking in team sports

论文作者

Rahimian, Pegah, Toka, Laszlo

论文摘要

对于教练,童子军和球迷来说,体育分析至关重要。最近,计算机视觉研究人员面临着通过提出几种自动玩家和球跟踪方法来收集必要数据的挑战。在收集的跟踪数据的基础上,数据矿工能够对球员和团队的性能进行定量分析。通过这项调查,我们的目标是为定量数据分析师提供有关创建输入数据及其特征的过程的基本理解。因此,我们通过分别提供传统和深度学习方法的全面分类法来总结光学跟踪的最新方法。此外,我们讨论了跟踪的预处理步骤,该领域中最常见的挑战以及跟踪数据在运动队中的应用。最后,我们通过其成本和限制来比较这些方法,并通过强调潜在的未来研究方向来结束工作。

Sports analysis has gained paramount importance for coaches, scouts, and fans. Recently, computer vision researchers have taken on the challenge of collecting the necessary data by proposing several methods of automatic player and ball tracking. Building on the gathered tracking data, data miners are able to perform quantitative analysis on the performance of players and teams. With this survey, our goal is to provide a basic understanding for quantitative data analysts about the process of creating the input data and the characteristics thereof. Thus, we summarize the recent methods of optical tracking by providing a comprehensive taxonomy of conventional and deep learning methods, separately. Moreover, we discuss the preprocessing steps of tracking, the most common challenges in this domain, and the application of tracking data to sports teams. Finally, we compare the methods by their cost and limitations, and conclude the work by highlighting potential future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源