论文标题

复杂球形代码的半芬矿编程范围

Semidefinite programming bounds for complex spherical codes

论文作者

Kao, Wei-Jiun, Suda, Sho, Yu, Wei-Hsuan

论文摘要

复杂的球形代码是$ \ mathbb {c}^d $中单元球体上的有限子集。复杂球形代码的一个基本问题是为那些有规定的内部产品的人找到上限。在本文中,我们在多项式环$ \ mathbb {c} [z_1 \ ldots,z_d,z_d,\ bar {z} _1 _1,\ ldots,\ ldots,\ ldots,\ bar {z} _d] $ nign in Confidited in Conegration中,确定了单一组$ u(d)$(d)$(d)$(d)$的动作的不可证实的分解代码。

A complex spherical code is a finite subset on the unit sphere in $\mathbb{C}^d$. A fundamental problem on complex spherical codes is to find upper bounds for those with prescribed inner products. In this paper, we determine the irreducible decomposition under the action of the one-point stabilizer of the unitary group $U(d)$ on the polynomial ring $\mathbb{C}[z_1\ldots,z_d,\bar{z}_1,\ldots,\bar{z}_d]$ in order to obtain the semidefinite programming bounds for complex spherical codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源