论文标题

huisken-yau型独特性,用于区域约束的willmore球体

Huisken-Yau-type uniqueness for area-constrained Willmore spheres

论文作者

Eichmair, Michael, Koerber, Thomas, Metzger, Jan, Schulze, Felix

论文摘要

令$(m,g)$为Riemannian $ 3 $ - manifold,对Schwarzschild渐近。我们研究了大面积约束的Willmore Spheres $σ\子集M $,其非负鹰质量和内部半径$ρ$由面积半径$λ$主导。如果$(m,g)$的标量曲率是非负的,我们表明没有$ \logλ\ llρ$的这样的表面。这回答了G. Huisken的问题。

Let $(M,g)$ be a Riemannian $3$-manifold that is asymptotic to Schwarzschild. We study the existence of large area-constrained Willmore spheres $Σ\subset M$ with non-negative Hawking mass and inner radius $ρ$ dominated by the area radius $λ$. If the scalar curvature of $(M,g)$ is non-negative, we show that no such surfaces with $\log λ\ll ρ$ exist. This answers a question of G. Huisken.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源