论文标题
huisken-yau型独特性,用于区域约束的willmore球体
Huisken-Yau-type uniqueness for area-constrained Willmore spheres
论文作者
论文摘要
令$(m,g)$为Riemannian $ 3 $ - manifold,对Schwarzschild渐近。我们研究了大面积约束的Willmore Spheres $σ\子集M $,其非负鹰质量和内部半径$ρ$由面积半径$λ$主导。如果$(m,g)$的标量曲率是非负的,我们表明没有$ \logλ\ llρ$的这样的表面。这回答了G. Huisken的问题。
Let $(M,g)$ be a Riemannian $3$-manifold that is asymptotic to Schwarzschild. We study the existence of large area-constrained Willmore spheres $Σ\subset M$ with non-negative Hawking mass and inner radius $ρ$ dominated by the area radius $λ$. If the scalar curvature of $(M,g)$ is non-negative, we show that no such surfaces with $\log λ\ll ρ$ exist. This answers a question of G. Huisken.