论文标题

重新审视的转移攻击:在真实计算机视觉设置中进行的一项大规模实证研究

Transfer Attacks Revisited: A Large-Scale Empirical Study in Real Computer Vision Settings

论文作者

Mao, Yuhao, Fu, Chong, Wang, Saizhuo, Ji, Shouling, Zhang, Xuhong, Liu, Zhenguang, Zhou, Jun, Liu, Alex X., Beyah, Raheem, Wang, Ting

论文摘要

对抗性攻击的一种有趣的特性是它们的“可转移性” - 相对于一个深神经网络(DNN)模型制定的对抗性例子也经常被发现针对其他DNN有效。在简单的受控条件下,已经对这种现象进行了深入的研究。然而,到目前为止,仍然缺乏对现实环境中基于可转移性的攻击(“转移攻击”)的全面了解。 为了弥合这一关键的差距,我们对基于云的主要MLAAS平台进行转移攻击进行了首次大规模的系统经验研究,从而考虑了真正的转移攻击的组成部分。该研究导致许多有趣的发现与现有的发现不一致,包括:(1)简单的代理不一定会改善实际转移攻击。 (2)在实际的转移攻击中未发现主要的替代体系结构。 (3)是后验(SoftMax层的输出)之间的差距,而不是logit(所谓的$κ$ value)之间的差距。此外,通过与先前的作品进行比较,我们证明了转移攻击在现实世界环境中具有许多以前未知的属性,例如(1)模型相似性不是一个定义明确的概念。 (2)$ l_2 $扰动规范可以在不使用梯度的情况下产生高传递性,并且比$ l_ \ infty $ norm norm and渐变更强大。我们认为这项工作阐明了流行的MLAA平台的脆弱性,并指出了一些有前途的研究方向。

One intriguing property of adversarial attacks is their "transferability" -- an adversarial example crafted with respect to one deep neural network (DNN) model is often found effective against other DNNs as well. Intensive research has been conducted on this phenomenon under simplistic controlled conditions. Yet, thus far, there is still a lack of comprehensive understanding about transferability-based attacks ("transfer attacks") in real-world environments. To bridge this critical gap, we conduct the first large-scale systematic empirical study of transfer attacks against major cloud-based MLaaS platforms, taking the components of a real transfer attack into account. The study leads to a number of interesting findings which are inconsistent to the existing ones, including: (1) Simple surrogates do not necessarily improve real transfer attacks. (2) No dominant surrogate architecture is found in real transfer attacks. (3) It is the gap between posterior (output of the softmax layer) rather than the gap between logit (so-called $κ$ value) that increases transferability. Moreover, by comparing with prior works, we demonstrate that transfer attacks possess many previously unknown properties in real-world environments, such as (1) Model similarity is not a well-defined concept. (2) $L_2$ norm of perturbation can generate high transferability without usage of gradient and is a more powerful source than $L_\infty$ norm. We believe this work sheds light on the vulnerabilities of popular MLaaS platforms and points to a few promising research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源