论文标题

在药物发现中进行虚拟筛查的量子机学习框架:前瞻性量子优势

Quantum Machine Learning Framework for Virtual Screening in Drug Discovery: a Prospective Quantum Advantage

论文作者

Mensa, Stefano, Sahin, Emre, Tacchino, Francesco, Barkoutsos, Panagiotis Kl., Tavernelli, Ivano

论文摘要

基于配体的虚拟筛查(LB-VS)的机器学习(ML)是以更快,更具成本效益的方式发现新药的重要内部工具,尤其是对于诸如Covid-19之类的新兴疾病。在本文中,我们提出了一个通用框架,该框架结合了经典的支持向量分类器(SVC)算法与现实数据库中LB-VS的量子内核估计,我们主张支持其前瞻性量子优势。确实,我们从启发性地证明,至少在某些相关实例中,与在同一数据集上运行的最新经典算法相比,我们的量子集成工作流可以提供明显的优势,从而显示出对目标和特征选择方法的强烈依赖。最后,我们使用ADRB2和COVID-19数据集测试了IBM量子处理器上的算法,这表明硬件模拟提供了与预测的性能一致的结果,并且可以超越经典的等效物。

Machine Learning (ML) for Ligand Based Virtual Screening (LB-VS) is an important in-silico tool for discovering new drugs in a faster and cost-effective manner, especially for emerging diseases such as COVID-19. In this paper, we propose a general-purpose framework combining a classical Support Vector Classifier (SVC) algorithm with quantum kernel estimation for LB-VS on real-world databases, and we argue in favor of its prospective quantum advantage. Indeed, we heuristically prove that our quantum integrated workflow can, at least in some relevant instances, provide a tangible advantage compared to state-of-art classical algorithms operating on the same datasets, showing strong dependence on target and features selection method. Finally, we test our algorithm on IBM Quantum processors using ADRB2 and COVID-19 datasets, showing that hardware simulations provide results in line with the predicted performances and can surpass classical equivalents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源