论文标题

Iga-Bem用于使用B-Spline量身定制的数值集成在多块域上的3D Helmholtz问题

IgA-BEM for 3D Helmholtz problems on multi-patch domains using B-spline tailored numerical integration

论文作者

Falini, Antonella, Kanduc, Tadej, Sampoli, Maria Lucia, Sestini, Alessandra

论文摘要

考虑到3D有限或无界域上的Helmholtz问题的数值解,考虑了一个ISOEDEMONETRIC边界元素方法(IGA-BEM),承认其有限边界表面的平滑形式的多斑表示。离散空间由$ c^0 $ patch连续基函数形成,其限制简化了由给定补丁参数化组成的张量b-splines的跨度。对于常规集成和奇异集成,提出的模型都采用了在每个试验B型函数支持下定义的数值过程,从而使矩阵组装阶段的功能成为可能的函数。样条式准插值是所有考虑的正交规则的共同成分;在奇异的情况下,它与样条学位上的b-Spline递归结合在一起,并采用奇异性提取技术,首次扩展到多块设置。提出了一种阈值选择策略,以自动区分几乎单数和常规积分。相关基准测试的数值示例表明,预期的收敛顺序是通过统一的离散化和少量均匀间隔的正交节点实现的。

An Isogeometric Boundary Element Method (IgA-BEM) is considered for the numerical solution of Helmholtz problems on 3D bounded or unbounded domains, admitting a smooth conformal multi-patch representation of their finite boundary surface. The discretization space is formed by $C^0$ inter-patch continuous basis functions whose restriction to a patch simplifies to the span of tensor product B-splines composed with the given patch parameterization. For both regular and singular integration, the proposed model utilizes a numerical procedure defined on the support of each trial B-spline function, which makes possible a function--by--function implementation of the matrix assembly phase. Spline quasi-interpolation is the common ingredient of all the considered quadrature rules; in the singular case it is combined with a B-spline recursion over the spline degree and with a singularity extraction technique, extended to the multi-patch setting for the first time. A threshold selection strategy is proposed to automatically distinguish between nearly singular and regular integrals. Numerical examples on relevant benchmarks show that the expected convergence orders are achieved with uniform discretization and a small number of uniformly spaced quadrature nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源