论文标题
伯恩斯坦空间中给定平均维度的最小子系统
Minimal subsystems of given mean dimension in Bernstein spaces
论文作者
论文摘要
在本文中,我们研究了在给定的紧凑间隔中均匀界定的连续函数限制的均匀界限的变化,并具有钢化分布的标准拓扑。我们给出一个建设性的证据,证明了最小子系统的存在,任何给定的平均维度严格少于其带宽的两倍。也考虑了实值的功能空间的版本。
In this paper, we study the shift on the space of uniformly bounded continuous functions band-limited in a given compact interval with the standard topology of tempered distributions. We give a constructive proof of the existence of minimal subsystems with any given mean dimension strictly less than twice its band-width. A version of real-valued function spaces is considered as well.