论文标题

引文市场是否奖励可重复的工作?

Does the Market of Citations Reward Reproducible Work?

论文作者

Raff, Edward

论文摘要

研究引用和行为的文献计量学领域对于讨论可重复性至关重要。引用是学术工作的主要激励和奖励系统之一,因此我们希望知道这种激励奖励是否可重复可重复工作。然而,据我们所知,只有一项作品试图研究这个合并的空间,得出的结论是,不可复制的工作受到了更高的引用。我们表明,回答这个问题比首先提出的更具挑战性,而微妙的问题可以抑制一个强大的结论。为了以更强大的行为进行推论,我们提出了一个分层贝叶斯模型,该模型随时间含量,而不是固定时间后引用的总数。在这样做时,我们表明,在当前证据下,答案更有可能是某些研究领域(例如医学和机器学习(ML)确实将可重复的作品与更多的引用相关联,但其他领域似乎没有任何关系。此外,我们发现,使代码可用并彻底参考先前的作品似乎也与引用增加正相关。我们的代码和数据可以在https://github.com/edwardraff/reproduciblecitation上找到。

The field of bibliometrics, studying citations and behavior, is critical to the discussion of reproducibility. Citations are one of the primary incentive and reward systems for academic work, and so we desire to know if this incentive rewards reproducible work. Yet to the best of our knowledge, only one work has attempted to look at this combined space, concluding that non-reproducible work is more highly cited. We show that answering this question is more challenging than first proposed, and subtle issues can inhibit a robust conclusion. To make inferences with more robust behavior, we propose a hierarchical Bayesian model that incorporates the citation rate over time, rather than the total number of citations after a fixed amount of time. In doing so we show that, under current evidence the answer is more likely that certain fields of study such as Medicine and Machine Learning (ML) do correlate reproducible works with more citations, but other fields appear to have no relationship. Further, we find that making code available and thoroughly referencing prior works appear to also positively correlate with increased citations. Our code and data can be found at https://github.com/EdwardRaff/ReproducibleCitations .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源