论文标题

通过矩阵组的矩阵乘法

Matrix multiplication via matrix groups

论文作者

Blasiak, Jonah, Cohn, Henry, Grochow, Joshua A., Pratt, Kevin, Umans, Chris

论文摘要

2003年,科恩和乌曼斯提出了一种群体理论方法来界定基质乘法的指数。这种方法中的先前工作排除了某些团体家庭,这是获得$ω= 2 $的途径,而其他团体家庭仍然可能可行。在本文中,我们将注意力转移到矩阵组上,其在此框架中的有用性相对尚未探索。 我们首先表明,在组理论方法中,谎言类型的组不能证明$ω= 2 $。这是基于一个表示理论参数,该参数标识了一个群体不可减至表示的第二个最小维度,作为确定其在此框架中的生存能力的关键参数。我们的证明基于Gowers的结果,该结果涉及Quasirandom组中的无产品集。然后,我们给出了另一个障碍,以排除某些天然矩阵组的结构,这些构造利用了远非自称的亚组。 我们的障碍结果留下了几条自然路径,通过矩阵组获得$ω= 2 $。为了探索这些途径,我们建议在谎言群体的连续环境中工作,在这种情况下,我们发展了一个类似的理论。在此潜在更轻松的设置中获得$ω= 2 $的类似物是一个关键挑战,它代表了一个中间目标,而实际证明$ω= 2 $。我们在连续的环境中提供了两个结构,每个结构都逃避了我们的两个障碍之一。

In 2003, Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix multiplication. Previous work within this approach ruled out certain families of groups as a route to obtaining $ω= 2$, while other families of groups remain potentially viable. In this paper we turn our attention to matrix groups, whose usefulness within this framework was relatively unexplored. We first show that groups of Lie type cannot prove $ω=2$ within the group-theoretic approach. This is based on a representation-theoretic argument that identifies the second-smallest dimension of an irreducible representation of a group as a key parameter that determines its viability in this framework. Our proof builds on Gowers' result concerning product-free sets in quasirandom groups. We then give another barrier that rules out certain natural matrix group constructions that make use of subgroups that are far from being self-normalizing. Our barrier results leave open several natural paths to obtain $ω= 2$ via matrix groups. To explore these routes we propose working in the continuous setting of Lie groups, in which we develop an analogous theory. Obtaining the analogue of $ω=2$ in this potentially easier setting is a key challenge that represents an intermediate goal short of actually proving $ω= 2$. We give two constructions in the continuous setting, each of which evades one of our two barriers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源